Anatomía humana
Anatomía del cuerpo humano, según Juan Valverde de Amusco, el sujeto aparece desollado sosteniendo en su mano su propia piel
La anatomía humana es la ciencia —de carácter práctico y morfológico principalmente— dedicada al estudio de las estructuras macroscópicas del cuerpo humano; dejando así el estudio de los tejidos a la histología y de las células a la citología y biología celular. La anatomía humana es un campo especial dentro de la anatomía general (animal).
Bajo una visión sistemática, el cuerpo humano —como los cuerpos de los animales—, está organizado en diferentes niveles según una jerarquía. Así, está compuesto de aparatos. Éstos los integran sistemas, que a su vez están compuestos por órganos, que están compuestos por tejidos, que están formados por células, que están formados por moléculas, etc. Otras visiones (funcional, morfogenética, clínica, etc.), bajo otros criterios, entienden el cuerpo humano de forma un poco diferente.
Contenido[ocultar]
1 Reseña histórica
2 Ramas y divisiones
3 Sistemas y aparatos del cuerpo humano
4 Anatomía topográfica
5 Anatomía artística
6 Véase también
7 Bibliografía
8 Enlaces externos
//
Reseña histórica [editar]
Históricamente se tiene constancia de que la anatomía era enseñada por Hipócrates en el siglo IV antes de Cristo. Se atribuye a Aristóteles el uso por primera vez de la palabra griega ἀνατομία (‘anatomía’) derivada del verbo ἀνατέμνειν anatémnein es decir cortes (ténnein) abiertos (ána) con el significado de diseccionar (separando las partes cortadas).
Bartolomeo Eustaquio(1500/1514-1574), también conocido con su nombre latino Eustachius, fue uno de los fundadores de la ciencia de la anatomía humana.
También estuvo Leonardo da Vinci con el modelo humano conocido como el Hombre de Vitruvio.
En el siglo XVI, Andreas Vesalius reformó y reivindicó el estudio de la anatomía para la medicina, corrigiendo los errores interpretativos de Galeno, quien disecaba monos y perros, con su magna opus De Humani Corporis Fabrica (Sobre las funciones del cuerpo humano).
Luego en el siglo XVII,William Harvey, médico inglés, descubrió la circulación sanguínea.
Ramas y divisiones [editar]
Algunas ramas o disciplinas como la osteología, la miología, la artrología, la angiología o la neuroanatomía cercan los límites de estudio del cuerpo humano de una manera más particular. Así, la miología realiza el estudio especifico de los músculos, su características y funciones; y la neuroanatomía realiza el estudio del sistema nervioso en forma extensiva.
La anatomía peneana o descriptiva: esquematiza el estudio del cuerpo humano fraccionándolo en las mínimas partes constituyentes, y organizándolas por sistemas y aparatos.
La anatomía topográfica o regional: organiza el estudio del cuerpo por regiones siguiendo diversos criterios. La anatomía regional tiende a un arreglo más funcional y práctico, bajo un entendimiento más abarcativo de las relaciones entre las diferentes estructuras componentes. La anatomía de superficie es un área esencial en el estudio, pues los recuadros de anatomía de superficie ofrecen una información visible y táctil sobre las estructuras que se sitúan debajo de la piel.
La anatomía clínica: pone énfasis sobre el estudio de la estructura y la función en correlación a situaciones de índole médico-clínica (y otras ciencias de la salud). Aquí importan diferentes áreas como: la anatomía quirúrgica; la anatomía radiológica y ultrasonográfica en relación al diagnóstico por imágenes; la anatomía morfogenética que se relaciona con las enfermedades congénitas del desarrollo; la anatomopatología, etc.
La anatomía artística: trata de las cuestiones anatómicas que afectan directamente a la representación artística de la figura humana. Por ejemplo, los músculos que aparecen superficialmente y sus tensiones según las diferentes posturas y/o esfuerzos; las transformaciones anatómicas que se producen en función de la edad, de la "raza" (o mejor dicho clina o fisiotipo), de las enfermedades; las transformaciones anatómicas debidas al gesto y/o las emociones se estudian en una subdivision de la anatomía humana artística denominada fisiognomía o bien fisiognómica.
Hay otras modalidades: anatomía comparada, anatomía funcional, etc.
Sistemas y aparatos del cuerpo humano [editar]
Conceptos claves
Sistema: es un grupo de órganos asociados que concurren en una función general y están formados predominantemente por los mismos tipos de tejidos. Por ejemplo: el sistema esquelético, el sistema cardiovascular, el sistema nervioso, etc.
Aparato: es un grupo de sistemas que desempeñan una función común y más amplia. Por ejemplo el aparato locomotor, integrado por los sistemas muscular, esquelético, articular y nervioso.
Aparato digestivo: procesado de la comida, boca, esófago, estómago, intestinos y glándulas anales.
Sistema endocrino: comunicación dentro del cuerpo mediante hormonas.
Aparato excretor: eliminación de residuos del cuerpo mediante la orina.
Sistema inmunitario: defensa contra agentes causantes de enfermedades.
Sistema integumentario: piel, pelo y uñas.
Sistema muscular: movimiento del cuerpo.
Sistema nervioso: recogida, transferencia y procesado de información, por el cerebro y los nervios, en este interactúan los AINES
Aparato reproductor: los órganos sexuales.(Masculinos y Femeninos)
Aparato respiratorio: los órganos empleados para la respiración son los pulmones. dentro de los cuales podemos encontrar los Bronquiolos, cilius etc.
Sistema óseo: apoyo estructural y protección mediante huesos.
Sistema articular: formado por las articulaciones y ligamentos asociados que unen el sistema esquelético y permite los movimientos corporales.
Aparato locomotor: conjunto de los sistemas esquelético, articular y muscular. Estos sistemas coordinados por el sistema nervioso permiten la locomoción.
Sistema cardiovascular: formado por el corazón, arterias, venas y capilares
Sistema linfático: formado por los capilares, vasos y ganglios linfáticos, bazo, Timo y Médula Ósea.
Sistema circulatorio: conjunto de los sitemas cardiovascular y linfático.
Anatomía topográfica [editar]
Bajo un criterio sexual, el cuerpo humano es estudiado por regiones, esquemáticamente (entre paréntesis los universalizados nombres en latín):
Cabeza (Caput)
Neurocráneo (Neurocranium)
Viscerocráneo (Viscerocranium)
Cuello (Colli)
Tronco (Truncus)
Espalda (Dorsum)
Tórax (Thorax)
Abdomen (Abdomen)
Pelvis (Pelvis)
Miembro superior (Membrum superius)
Cintura escapular (Cingulum membri superioris)
Brazo (Brachium)
Antebrazo (Antebrachium)
Mano (manus)
Miembro inferior (Membrum inferius)
Cintura pelviana (Cingulum membri inferioris)
Muslo (Fémur)
Pierna (Crus)
Pie (Pes)
Anatomía artística [editar]
El descubrimiento de la anatomía humana está íntimamente ligado a la anatomía artística. Se puede concretar más aún y afirmar que los conocimientos de la anatomía humana y la artística discurren paralelos a la historia del desnudo en el arte y en la vida cotidiana. Los griegos no tenían tanta necesidad de diseccionar cadáveres (pese a las vivisecciones de Herófilo de Calcedonia, quien trabajo en la helenística Alejandría en tiempos del Imperio Romano), para efectuar representaciones figurativas del cuerpo humano como tuvieron que hacer mil quinientos años después los científicos-artistas del Renacimiento. Ya que los antiguos griegos, desde niños, contemplaban los desnudos de sus jóvenes atletas y de sus heteras. Sin embargo no debemos exagerar este vínculo.
La representación artística tiene su propia trayectoria, independiente de la trayectoria de la ciencia, a pesar de las indiscutibles coincidencias que se encuentran, como en los estudios de Leonardo. El ejemplo del desnudo griego lo pone de manifiesto: el kouros era un modelo de representación artística arcaizante y algo hierática, pero no un modelo de representación anatómica. La representación anatómica del kouros estuvo idealizada o esquematizada durante doscientos años, desde el Periodo Arcaico (650 a. C.) hasta Fidias y Praxíteles (ca. 450 a. C.), y el período del clasicismo helenístico que luego se extendió a las artes etruscas y romanas; en estas dos artes llama la atención la búsqueda en ocasiones de un descarnado realismo; los bustos etruscos y romanos eran inicialmente esculturas en terracota o en bronce que obtenían de los moldes de mascarillas funerarias ya que el paradigma de esas culturas era suponer que se preservaba algo de la vida del difunto al representar del modo más fiel posible sus facciones.
libro que se lanzara en 2009 del escritor Sebastian Arango.
Aparato digestivo
El aparato digestivo es el conjunto de órganos (boca, faringe, esófago, estómago, intestino delgado e intestino grueso) encargados del proceso de la digestión, es decir, la transformación de los alimentos para que puedan ser absorbidos y utilizados por las células del organismo.
La función que realiza es la de transporte (alimentos), secreción (jugos digestivos), absorción (nutrientes) y excreción mediante el proceso de defecación.
El proceso de la digestión es el mismo en todos los animales: transformar los glúcidos, lípidos y proteínas en unidades más sencillas, gracias a las enzimas digestivas, para que puedan ser absorbidas y transportadas por la sangre.
Contenido[ocultar]
1 Aparato digestivo
1.1 Descripción y funciones
1.2 Estructura del tubo digestivo
1.3 Descripción anatómica
1.3.1 Esófago
1.3.2 Estómago
1.3.3 Intestino delgado
1.3.4 Intestino grueso
1.3.5 Páncreas
1.3.6 Hígado
1.3.7 Bazo
2 Enfermedades del aparato digestivo
3 Véase también
//
Aparato digestivo [editar]
Descripción y funciones [editar]
El aparato digestivo es un largo tubo, con importantes glándulas asociadas, siendo su función la transformación de las complejas moléculas de los alimentos en sustancias simples y fácilmente utilizables por el organismo.
Desde la boca hasta el ano, el tubo digestivo mide unos once metros de longitud. En la boca ya empieza propiamente la digestión. Los dientes trituran los alimentos y las secreciones de las glándulas salivales los humedecen e inician su descomposición química. Luego, el bolo alimenticio cruza la faringe, sigue por el esófago y llega al estómago, una bolsa muscular de litro y medio de capacidad, en condiciones normales, cuya mucosa segrega el potente jugo gástrico, en el estómago, el alimento es agitado hasta convertirse en una papilla llamada quimo.
A la salida del estómago, el tubo digestivo se prolonga con el intestino delgado, de unos cinco metros de largo, aunque muy replegado sobre sí mismo. En su primera porción o duodeno recibe secreciones de las glándulas intestinales, la bilis y los jugos del páncreas. Todas estas secreciones contienen una gran cantidad de enzimas que degradan los alimentos y los transforman en sustancias solubles simples.
El tubo digestivo continúa por el intestino grueso, de algo más de metro y medio de longitud. Su porción final es el recto, que termina en el ano, por donde se evacuan al exterior los restos indigeribles de los alimentos.
Estructura del tubo digestivo [editar]
El tubo digestivo, llamado también conducto alimentario o tracto gastrointestinal presenta una sistematización prototípica, comienza en la boca y se extiende hasta el ano. Su longitud en el hombre es de 10 a 12 metros, siendo seis o siete veces la longitud total del cuerpo. En su trayecto a lo largo del tronco del cuerpo, discurre por delante de la columna vertebral. Comienza en la cara, desciende luego por el cuello, atraviesa las tres grandes cavidades del cuerpo: torácica, abdominal y pélvica. En el cuello está en relación con el conducto respiratorio, en el tórax se sitúa en el mediastino posterior entre los dos pulmones y el corazón, y en el abdomen y pelvis se relaciona con los diferentes órganos del aparato genitourinario. El tubo digestivo procede embriológicamente del endodermo, al igual que el aparato respiratorio. El tubo digestivo y las glándulas anexas (glándulas salivales, hígado y páncreas), forman el aparato digestivo. Histológicamente está formado por cuatro capas concéntricas que son de adentro hacia afuera:
Capa interna o mucosa (donde pueden encontrarse glándulas secretoras de moco y HCl vasos linfáticos y algunos nódulos linfoides). Incluye una capa muscular interna o muscularis mucosae compuesta de una capa circular interna y una longitudinal externa de músculo liso.
Capa submucosa compuesta de tejido conectivo denso irregular fibroelástico. La capa submucosa contiene el llamado plexo submucoso de Meissner, que es un componente del sistema nervioso entérico y controla la motilidad de la mucosa y en menor grado la de la submucosa, y las actividades secretorias de las glándulas
Capa muscular externa compuesta, al igual que la muscularis mucosae, por una capa circular interna y otra longitudinal externa de músculo liso (excepto en el esófago, donde hay músculo estriado). Esta capa muscular tiene a su cargo los movimientos peristálticos que desplazan el contenido de la luz a lo largo del tubo digestivo. Entre sus dos capas se encuentra otro componente del sistema nervioso entérico, el plexo mientérico de Auerbach, que regula la actividad de esta capa.
Capa serosa o adventicia. Se denomina según la región del tubo digestivo que reviste, como serosa si es intraperitoneal o adventicia si es retroperitoneal. La adventicia está conformada por un tejido conectivo laxo. La serosa aparece cuando el tubo digestivo ingresa al abdomen, y la adventicia pasa a ser reemplazada por el peritoneo.
Los plexos submucoso y mientérico constituyen el sistema nervioso entérico que se distribuye a lo largo de todo el tubo digestivo, desde el esófago hasta el ano. Por debajo del diafragma, existe una cuarta capa llamada serosa, formada por el peritoneo. El bolo alimenticio pasa a través del tubo digestivo y se desplaza así, con ayuda tanto de secreciones como de movimiento peristáltico que es la elongación o estiramiento de las fibras longitudinales y el movimiento para afuera y hacia adentro de las fibras circulares. A través de éstos el bolo alimenticio puede llegar a la válvula cardial que conecta directamente con el estómago. Si el nivel de corte es favorable, se puede ver los mesos. El peritoneo puede presentar subserosa desarrollada, en especial en la zona del intestino grueso, donde aparecen los apéndices epiploicos. Según el sector del tubo digestivo, la capa muscular de la mucosa puede tener sólo músculo longitudinal o longitudinal y circular. La mucosa puede presentar criptas y vellosidades, la submucosa puede presentar pliegues permanentes o pliegues funcionales. El pliegue funcional de la submucosa es posible de estirar, no así la válvula connivente. El grosor de la pared cambia según el lugar anatómico, al igual que la superficie, que puede ser lisa o no. El epitelio que puede presentarse es un plano pluriestratificado no cornificado o un prismático simple con microvellosidades. En las criptas de la mucosa desembocan glándulas. Éstas pueden ser de la mucosa o de la submucosa. En tanto, una vellosidad es el solevantamiento permanente de la mucosa. Si el pliegue es acompañado por la submucosa, entonces el pliegue es de la submucosa. El pliegue de la submucosa es llamado válvula connivente o pliegue de Kerckring. La válvula connivente puede mantener la presencia de vellosidades. La válvula connivente es perpendicular al tubo digestivo, y solo se presenta en el intestino delgado.
Descripción anatómica [editar]
Esófago [editar]
Artículo principal: Esófago
El esófago es un conducto o músculo membranoso que se extiende desde la faringe hasta el estómago. De los incisivos al cardias (porción donde el esófago se continua con el estómago) hay unos 40 cm. El esófago empieza en el cuello, atraviesa todo el tórax y pasa al abdomen a través del orificio esofágico del diafragma. Habitualmente es una cavidad virtual. (es decir que sus paredes se encuentran unidas y solo se abren cuando pasa el bolo alimenticio). El esófago alcanza a medir 25 cm y tiene una estructura formada por dos capas de músculos, que permiten la contracción y relajación en sentido descendente del esófago. Estas ondas reciben el nombre de movimientos peristálticos y son las que provocan el avance del alimento hacia el estómago.
Estómago [editar]
Artículo principal: Estómago
El estómago es un órgano en el que se acumula comida.Varia de forma según el estado de repleción (cantidad de contenido alimenticio presente en la cavidad gástrica) en que se halla, habitualmente tiene forma de J. Consta de varias partes que son : fundus, cuerpo, antro y píloro. Su borde menos extenso se denomina curvatura menor y la otra, curvatura mayor. El cardias es el límite entre el esófago y el estómago y el píloro es el límite entre estómago y el intestino delgado . En un individuo mide aproximadamente 25cm del cardias al píloro y el diámetro transverso es de 12cm. Es el encargado de hacer la transformación química ya que los jugos gástricos transforman el bolo alimenticio que anteriormente había sido transformado mecánicamente (desde la boca). En su interior encontramos principalmente dos tipos de células, las células parietales, las cuales secretan el ácido clorhídrico (HCL) y el factor intrínseco, una glucoproteina utilizada en la absorción de vitamina B12 en el intestino delgado; además contiene las células principales u Oxínticas las cuales secretan pepsinógeno, precursor enzimático que se activa con el HCL formando 3 pepsinas cada uno. La secreción de jugo gástrico está regulada tanto por el sistema nervioso como el sistema endocrino, proceso en el que actúan: la gastrina, la colecistoquinina (CCK), la secretina y el peptido inhibidor gástrico (PIG).
En el Estomago se realiza la digestión de:
Proteínas (principalmente pepsina).
Lípidos
NO ocurre la digestión de Carbohidratos.
Otras funciones del estomago son la eliminación de la flora bacteriana que viene con los alimentos por acción del ácido clorhídrico.
Intestino delgado [editar]
Artículo principal: Intestino delgado
El intestino delgado se inicia en el duodeno (tras el píloro) y termina en la válvula ileocecal, por la que se une a la primera parte del intestino grueso. Su longitud es variable y su calibre disminuye progresivamente desde su origen hasta la válvula ileocecal y mide de 6 a 7 metros de longitud. El duodeno, que forma parte del intestino delgado, mide unos 25 - 30 cm de longitud; el intestino delgado consta de una parte próxima o yeyuno y una distal o íleon; el limite entre las dos porciones no es muy aparente. El duodeno se une al yeyuno después de los 30cm a partir del píloro. El yeyuno-ìleon es una parte del intestino delgado que se caracteriza por presentar unos extremos relativamente fijos: El primero que se origina en el duodeno y el segundo se limita con la válvula ileocecal y primera porción del ciego. Su calibre disminuye lenta pero progresivamente en dirección al intestino grueso. El límite entre el yeyuno y el íleon no es apreciable. El intestino delgado presenta numerosas vellosidades intestinales que aumentan la superficie de absorción intestinal de los nutrientes y de las proteínas. Al intestino delgado, principalmente al duodeno, se vierten una diversidad de secreciones, como la bilis y el jugo pancreático.
En el intestino delgado, principalmente en el duodeno se realiza la digestión de proteínas, lípidos, ácidos nucleicos, y carbohidratos.
Intestino grueso [editar]
Artículo principal: Intestino grueso
El intestino grueso se inicia a partir de la válvula ileocecal en un fondo de saco denominado ciego de donde sale el apéndice vermiforme y termina en el recto. Desde el ciego al recto describe una serie de curvas, formando un marco en cuyo centro están las asas del yeyuno íleon. Su longitud es variable, entre 120 y 160 cm, y su calibre disminuye progresivamente, siendo la porción más estrecha la región donde se une con el recto o unión rectosigmoidea donde su diámetro no suele sobrepasar los 3 cm, mientras que el ciego es de 6 o 7 cm. Tras el ciego, la del intestino grueso es denominada como colon ascendente con una longitud de 15cm, para dar origen a la tercera porción que es el colon transverso con una longitud media de 50cm, originándose una cuarta porción que es el colon descendente con 10cm de longitud. Por último se diferencia el colon sigmoideo, recto y ano. El recto es la parte terminal del tubo digestivo.
Páncreas [editar]
Artículo principal: Páncreas
Es una glándula íntimamente relacionada con el duodeno, es de origen mixto, segrega hormonas a la sangre para controlar los azucares y jugo pancreatico que se vierte al intestino a traves del conducto páncreatico, e interviene y facilita la digestion , sus secreciones son de gran importancia en la digestión de los alimentos.Y fabrica la insulina
Hígado [editar]
Artículo principal: Hígado
El hígado es la mayor víscera del cuerpo. Pesa 1500 gramos. Consta de dos lóbulos. Las vías biliares son las vías excretoras del hígado, por ellas la bilis es conducida al duodeno. normalmente salen dos conductos: derecho e izquierdo, que confluyen entre sí formando un conducto único. El conducto hepático, recibe un conducto más fino, el conducto cístico, que proviene de la vesícula biliar alojada en la cara visceral de hígado. De la reunión de los conductos cístico y el hepático se forma el colédoco, que desciende al duodeno, en la que desemboca junto con el conducto excretor del páncreas. La vesícula biliar es un reservorio musculo membranoso puesto en derivación sobre las vías biliares principales. Contiene unos 50-60 cm³ de bilis. Es de forma ovalada o ligeramente piriforme y su diámetro mayor es de unos 8 a 10 cm.
Bazo [editar]
Artículo principal: Bazo
El bazo, por sus principales funciones se debería considerar un órgano del sistema circulatorio. Su tamaño depende de la cantidad de sangre que contenga.
Enfermedades del aparato digestivo [editar]
El aparato digestivo es un sistema fundamental dentro de nuestro cuerpo, ya que con base en este podemos desarrollar, aprovechar, asimilar y procesar todos nuestros alimentos desde la boca hasta el ano.
Las enfermedades en el sistema digestivo (incluso el cáncer), por lo general, son producto de factores externos, tales como la alimentación e infecciones, con lo cual, podemos deducir que la mayoría de las veces en las cuales ocurre una anomalía es por producto de nuestro propio descuido y poca rigurosidad con la higiene y la dieta. Al tener presentes estos datos, se puede decir que las enfermedades no son casuales, y son evitables.
Gastritis: Se caracteriza por una inflamación en la mucosa del estómago, causada por sustancias irritantes en las comidas o situaciones de estrés constante. Síntomas de la enfermedad serían dolores abdominales, fuertes punzadas. Otros factores que promueven la gastritis son infecciones virales, bacterianas, desnutrición, ingesta constante de medicamentos y de alcohol.
Colitis: Inflamación del intestino grueso. Síntomas característicos son la diarrea y los dolores abdominales. Posible factor causal: El estrés emocional.
Síndrome del colon irritable (colon espástico): Se caracteriza por síntomas como diarrea, estreñimiento y dolor abdominal. Se asocia a estados de estrés y ansiedad.
El cáncer del estómago es producto de varias causas, entre las cuales podemos contar una infección por la Helicobacter Pylori, pero es evitable con una adecuada manipulación de los alimentos y de todos los productos que podrían ser ingeridos.
Sistema endocrino
Glándulas endocrinas importantes. (masculino a la izquierda, femenino a la derecha).1. Glándula pineal2. Glándula pituitaria3. Glándula tiroides4. Timo5. Glándula adrenal6. Páncreas7. Ovario8. Testículo
El sistema endocrino u hormonal es un conjunto de órganos y tejidos del organismo que liberan un tipo de sustancias llamadas hormonas y está constituido además de estas, por células especializadas y glándulas endocrinas. Actúa como una red de comunicación celular que responde a los estímulos liberando hormonas y es el encargado de diversas funciones metabólicas del organismo; entre ellas encontramos:
Controlar la intensidad de funciones químicas en las células.
Regir el transporte de sustancias a través de las membranas de las células.
Regular el equilibrio (homeostasis) del organismo.
Hacer aparecer las características sexuales secundarias.
Otros aspectos del metabolismo de las células, como crecimiento y secreción.
Contenido[ocultar]
1 Anatomía
2 Hormonas
2.1 Características
2.2 Efectos
2.3 Clasificación
3 Véase también
4 Referencias
//
Anatomía
El sistema endocrino está formado por las siguientes glándulas endocrinas (que secretan sus productos a la sangre):
Hipotálamo
Hipófisis
Glándulas hipófiso-dependientes
Glándula tiroides
Ovarios y testículos
Glándulas hipófiso-independientes
Glándula paratiroides
Páncreas
Glándulas Endocrinas
Glándulas Exocrinas
Glándulas suprarrenales
Timo (presente hasta la pubertad)
El sistema endocrino está íntimamente ligado al sistema nervioso, de tal manera que la hipófisis recibe estímulos del hipotálamo y la médula suprarrenal del sistema nervioso simpático. A este sistema se le llama sistema neuroendocrino.[1] Incluso el sistema inmunitario también está relacionado a este sistema neuroendocrino a través de múltiples mensajeros químicos.
Mediante el proceso químico al que sean sometidas las glándulas endocrinas pueden efectuarse cambios biológicos mediante diversas acciones químicas.
Hormonas
Artículo principal: Hormona
Las hormonas son segregadas por ciertas células especializadas localizadas en glándulas de secreción interna o glándulas endocrinas, o también por células epiteliales e intersticiales. Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media) y hacen su efecto en determinados órganos o tejidos a mediana distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autocrina) o sobre células contiguas (acción paracrina) interviniendo en la comunicación celular. Existen hormonas naturales y hormonas sintéticas. Unas y otras se emplean como medicamentos en ciertos trastornos, por lo general, aunque no únicamente, cuando es necesario compensar su falta o aumentar sus niveles si son menores de lo normal.
Características
Actúan sobre el metabolismo
Se liberan al espacio extra celular
Viajan a través de la sangre
Afectan tejidos que pueden encontrarse lejos del punto de origen de la hormona
Su efecto es directamente proporcional a su concentración
Independientemente de su concentración, requieren de adecuada funcionalidad del receptor, para ejercer su efecto.
Regulan el funcionamiento del cuerpo
Efectos
Estimulante: promueve actividad en un tejido. Ej: prolactina. Ej: guesina.
Inhibitorio: disminuye actividad en un tejido. Ej: somatostatina
Antagonista: cuando un par de hormonas tienen efectos opuestos entre sí. Ej: insulina y glucagón
Sinergista: cuando dos hormonas en conjunto tienen un efecto más potente que cuando se encuentran separadas. Ej: hGH y T3/T4
Trópica: esta es una hormona que altera el metabolismo de otro tejido endocrino. Ej: gonadotropina sirven de mensajeros químicos
Clasificación
Las glándulas endocrinas producen y secretan varios tipos químicos de hormonas:
Esteroideas: solubles en lípidos, se difunden fácilmente hacia dentro de la célula diana. Se une a un receptor dentro de la célula y viaja hacia algún gen del ADN nuclear al que estimula su transcripción. En el plasma, el 95% de estas hormonas viajan acopladas a transportadores protéicos plasmáticos.
No esteroide: derivadas de aminoácidos. Se adhieren a un receptor en la membrana, en la parte externa de la célula. El receptor tiene en su parte interna de la célula un sitio activo que inicia una cascada de reacciones que inducen cambios en la célula. La hormona actúa como un primer mensajero y los bioquímicos producidos, que inducen los cambios en la célula, son los segundos mensajeros.
Aminas: aminoácidos modificados. Ej: adrenalina, noradrenalina.
Péptidos: cadenas cortas de aminoácidos, por ej: OT, ADH. Son hidrosolubles con la capacidad de circular libremente en el plasma sanguíneo (por lo que son rápidamente degradadas: vida media <15 title="Interacciones proteína-proteína" href="http://es.wikipedia.org/wiki/Interacciones_prote%C3%ADna-prote%C3%ADna">Interactúan con receptores de membrana activando de ese modo segundos mensajeros intracelulares.
Protéicas: proteínas complejas. Ej: GH, PcH
Glucoproteínas: ej: FSH, LH
Aparato excretor
Componentes del aparato urinario: riñón, uréteres, vejiga y uretra
El aparato excretor es un conjunto de órganos encargados de la eliminación de los residuos nitrogenados del metabolismo, conocidos por la medicina como orina; que lo conforman la urea y la creatinina. Su arquitectura se compone de estructuras que filtran los fluidos corporales (líquido celomático, hemolinfa, sangre). En los invertebrados la unidad básica de filtración es el nefridio, mientras que en los vertebrados es la nefrona o nefrón. El aparato urinario humano se compone, fundamentalmente, de dos partes que son:
Los órganos secretores: los riñones, que producen la orina y desempeñan otras funciones
La vía excretora, que recoge la orina y la expulsa al exterior.
Está formado por un conjunto de conductos que son:
Los uréteres, que conducen la orina desde los riñones a la vejiga urinaria.
La vejiga urinaria, receptáculo donde se acumula la orina.
La uretra, conducto por el que sale la orina hacia el exterior, siendo de corta longitud en la mujer y más larga en el hombre denominada uretra peneana.
Contenido[ocultar]
1 Histoanatomía del Aparato Urinario: Los Riñones
1.1 Estructura del Riñón
2 El Nefrón
3 Vías Urinarias
4 Inervación del Sistema Urinario
5 Enfermedades del Aparato Urinario
5.1 Cistitis
5.2 Insuficiencia renal aguda
6 Enlaces externos
//
Histoanatomía del Aparato Urinario: Los Riñones [editar]
La parte inicial y de mayor importancia que se encarga de la filtración de tejidos y ciertos fluidos, así como la eliminación de toxinas son los riñones que son órganos con forma de frijol, ubicados en el retroperitoneo sobre la pared abdominal posterior. El borde lateral es convexo y el medial es cóncavo. Sobre éste encontramos el hilio renal que conecta con el seno renal, una cavidad intrínseca en la que se sitúan los cálices renales. Los riñones del latín renis y del griego nefros, pesan alrededor de 150 g, y llegan a medir en el individuo adulto hasta 3×6×12 cm (espesor, anchura y longitud), aunque hay una decreción de tamaño al llegar a la tercera edad. Este órgano es de vital importancia en la vida humana, y se utiliza ampliamente desde la etapa fetal hasta la expiración del individuo para su propia manutención. Excreta agua, productos nitrogenados, sales inorgánicas, ácido úrico, venenos y dióxido de carbono, como resultado del catabolismo proteico, regulando así la osmolaridad de los fluidos corporales, el balance de electrolitos, y de pH. En el riñón se produce la eritropoyetina, estimulando así la formación de eritrocitos en la médula ósea, además de producir renina, calcitrol y prostaglandinas.
Estructura del Riñón [editar]
Imagen:Riñón Estructuras.jpg
Topográficamente el riñón está cubierto por una cápsula de tejido conectivo colagenoso denso denominada como Cápsula Nefrótica, y sobre su borde medial se encuentra una incisura denominada Hilio Renal en donde podemos apreciar la salida de estructuras vitales como la arteria y vena renales y el uréter. La corteza presenta un aspecto rojizo oscuro granulado y rodea completamente a la médula renal enviando prolongaciones denominadas columnas renales que se injertan en toda la profundidad medular. La médula renal presenta el doble de espesor que la corteza y unas estructuras de color rojizo muy claro con forma de pirámides, denominadas Pirámides Renales, que se separan por las columnas renales. Las Papilas Renales se distribuyen cada una dentro de un cáliz menor en forma de embudo, tomando en cuenta que cada riñón humano posee 8 a 18 pirámides renales, existiendo también de 8 a 18 Cálices Menores, y de 2 a 3 Cálices Mayores.
Desde un punto de vista histológico, en un corte sagital del órgano observaremos que el parénquima (porción celular) está compuesto por una corteza y una médula. En la médula aparecen unas estriaciones organizadas en forma piramidal. Estas pirámides son las denominadas Pirámides de Malpigio (o renales) que presentan un vértice orientado hacia los cálices (papilas) y una base que mira hacia la zona convexa del riñón. A partir de ésta surgen unas estructuras radiales, que también cuentan con una forma piramidal, con composición similar a la medular: son las Pirámides de Ferrein (o rayos medulares). El aparato urinario está muy relacionado embriológica y anatómicamente con el aparato genital, de tal manera que a ambos aparatos se les llama el aparato urogenital. El aparato excretor tiene una importantisima misión metabólica en el organismo. Es el encargado de eliminar todos los productos sobrantes de dicho metabolismo y contribuir activamente al mantenimiento del equilibrio hidroelectrolítico. Este aparato se aloja en el abdomen, tanto en su parte más alta (riñones y suprarrenales), como en la inferior. Los elementos que lo constituyen son: los riñones, los uréteres, la vejiga y la uretra.
El aparato urinario es el encargado de recoger de todo nuestro organismo los productos de desecho resultantes de los procesos metabólicos corporales y eliminarlos merced a la formación y expulsión de orina.
Para ello, en el riñón, en los llamados glomérulos, se produce una filtración de líquido que, procedente de los capilares sanguíneos, se dirige hacia los túbulos renales para ser excretado. Durante este trayecto se va modificando la composición de este líquido hasta, finalmente, adquirir la de la orina, la cual está formada por agua en la que hay disueltos iones y numerosos metabolitos resultantes de todas las reacciones químicas del organismo.
La secreción urinaria ya formado es recogida en la llamada pelvis renal y transportada por los uréteres hasta la vejiga urinaria, lugar en que se almacena hasta haber la suficiente cantidad para ser expulsada en el acto de la micción, a través del organismo.
En el varón, la porción terminal de aparato unitario, la uretra, está compartida con el aparato reproductor ya que, durante el acto sexual, el semen debe circular por ella.
No ocurre así en la hembra, en la que hay una separación total de ambos aparatos.
Resumiendo pues, podremos decir que el aparato excretor está formado por:
Órgano formador de la orina: el riñón.
Sistema de conducción de la orina: los urétreres.
Reservorio de orina: la vejiga.
Conducto de excreción: la uretra.
Son los órganos fundamentales del aparato excretor, donde se forma la orina.
Aparte de la función de eliminación de productos de desecho, tienen una acción importante de control de la tensión arterial.
Se hallan situados en la región lumbar, a ambos lados u por delante de la columna lumbar.
Son de color pardo rojizo y de un tamaño aproximado de 11 x 5 x 3 cm. Su peso oscila entre 110 y 180 gr.
El riñón izquierdo se halla algo más alto que el derecho (1,5 cm). pueden movilizarse con los cambios de postura y con movimientos respiratorios. Habitualmente se hallan a la altura de las vértebras 12° dorsal - 3° lumbar.
El Nefrón [editar]
Imagen:Nefrón.jpg
Es la unidad funcional renal en donde se forman los usuados. Cada nefrón comienza por un extremo ciego ensanchado, invaginado por un ovillo capilar, por lo que se forma una pequeña estructura redondeada denominada Corpúsculo Renal o Glomérulo de Bargmann. Desde ahí parten dos porciones denominadas la pars convulta que involucra al túbulo contorneado proximal; y la pars recta que se comunica con el túbulo distal a través del segmento delgado. Por lo tanto la parte recta del túbulo proximal, el segmento delgado y la parte recta del túbulo distal conforman al Asa de Henle.
Imagen:Glomérulo de Bargmann.jpg
Glomérulo de Bargmann
Microarquitectura del Glomérulo de Bargmann:
Existen en cada riñón un promedio de 1.500.000 glomérulos de Bargmann, todos totalmente vascularizados encargados de llevar el proceso funcional del riñón en conjunto. Cada glomérulo se caracteriza por tener dos polos, el polo urinario: por donde emana el túbulo proximal; y el polo vascular por donde emanan las arteriolas aferente y eferente, y por encima de ellas se localiza a una porción del túbulo distal compuesto por la mácula densa. La capa más externa es denominada como Cápsula de Bowman, seguida por la Capa Parietal, el Espacio Capsular, y la Capa Visceral en donde encontramos podocitos y células mesangiales que dan sostén al glomérulo secretando matriz mesangial, colágena, y proteoglicano condroitin sulfato.
La arteriola aferente posee en su estructura a las células yuxtaglomerulares quienes secretan Renina-angiotensina.
Vías Urinarias [editar]
Imagen:Vías Urinarias.jpg
Vías urinarias
Imagen:Uretra Masculina.jpg
Uretra masculina
El viaje de la orina pasa desde las papilas renales hacia los cálices menores, y de ahí a los cálices mayores, la pelvis renal y mediante el uréter llegan a la vejiga en donde sirve de reservorio para la orina, con una capacidad normal de 500 ml, alcanzando su capacidad máxima de 1 L . De la vejiga atraviesa la uretra en donde es expulsada hacia el exterior del organismo, alcanzando una velocidad de 30 a 35 km/h cuando la vejiga se encuentra llena en su capacidad promedio, y cuando está en su máximo reservorio es expulsada a unos 50 km/h . Al atravesar la uretra peneana (en el varón) cabe mencionar que la orina es expulsada a mayor velocidad alcanzando en su cúspide máxima hasta unos 75 km/h, siendo proporcionada estas características expulsivas por la estructura de dicha uretra.
La vejiga y los uréteres están revestidos por un epitelio de transición que sólo aparece en el recorrido de las vías urinarias excretoras, denominado en Urología como urotelio. En el uréter encontramos 3 túnicas denominadas como Túnica Mucosa, Túnica Muscular y la Túnica Adventicia.
Inervación del Sistema Urinario [editar]
Las fibras nerviosas alcanzan el riñón siguiendo el plexo renal. Hay una red de fibras nerviosas que siguen con la arteria renal desde la aorta hasta el riñón. En el plexo renal, también puede haber cuerpos de células ganglionares; deben considerarse células emigradas de los ganglios aórtico y celiaco. La mayor parte de las fibras del plexo renal corresponden a la porción simpática del sistema vegetativo y provienen de las células de los ganglios celiaco y aórtico. En el plexo renal hay un número menor de fibras parasimpáticas. Provienen del nervio vago, cuyas fibras, para alcanzarlo, atraviesan el plexo celíaco sin interrupción.
Las fibras nerviosas del plexo renal siguen las paredes arteriales y penetran en la sustancia del riñón. Penetran en los glomérulos para constituir en ellos amplias redes perivasculares. También pueden inervar el epitelio de los tubos contorneados, el epitelio de transición de la pelvis, y las paredes de arterias y venas.
Como tanto los riñones trasplantados, que carecen de inervación, como los riñones in situ desprovistos de sus nervios, funcionan de forma prácticamente normal, se podría decir que las funciones renales no dependen fundamentalmente de mecanismos nerviosos. Sin embargo, éstos la controlan hasta cierto punto. Es muy probable que la mayor parte de esta acción se ejerza por vía de las fibras simpáticas que terminan en los vasos sanguíneos.
Impulsos aferentes siguen por los nervios del plexo renal, pues la sección de las fibras de este plexo suprime el dolor de origen renal. A lo largo del ureter hay fibras simpáticas y fibras parasimpáticas, pero no parecen guardar relación particular con los movimientos peristálticos normales que se producen en la musculatura del conducto, ya que tales movimientos continúan cuando dichos nervios han sido cortados. Algunos de estos nervios llevan impulsos aferentes.
La vejiga está inervada tanto por fibras simpáticas como por fibras parasimpáticas. Las parasimpáticas provienen de la porción sacra. Los ganglios terminales a los cuales van a parar dichas fibras se hallan en la propia pared vesical; por lo tanto, en cortes de vejiga, un estudiante puede alguna vez encontrar células ganglionares.
Enfermedades del Aparato Urinario [editar]
Cistitis [editar]
Es la inflamación aguda o crónica de la vejiga urinaria, con infección o sin ella. Puede tener distintas causas. Los síntomas más frecuentes son: aumento de la frecuencia de las micciones, presencia de turbidez de la orina. La causa más frecuente de cistitis es la infección por bacterias gram negativas para que un germen produzca cistitis primero debe de colonizar la orina de la vejiga (bacteriuria) y posteriormente producir una respuesta inflamatoria en la mucosa vesical. A esta forma de cistitis se le denomina cistitis bacteriana aguda. Afecta a personas de todas las edades, aunque sobre todo a mujeres en edad fértil o a ancianos de ambos sexos. Otras formas de cistitis son la cistitis tuberculosa (producida en el contexto de una infección tuberculosa del aparato urinario), la cistitis química (causada por efectos tóxicos directos de algunas sustancias sobre la mucosa vesical, por ejemplo la ciclofosfamida), la cistitis glandular (una metaplasia epitelial con potencialidad premaligna) o la cistitis intersticial (una enfermedad funcional crónica que cursa con dolor pélvico, urgencia y frecuencia miccional).
Insuficiencia renal aguda [editar]
Imagen:PIV1.jpg
PIV 1
Algunos problemas de los riñones ocurren rápidamente, como un accidente que causa lesiones renales. La pérdida de mucha sangre puede causar insuficiencia renal repentina. Algunos medicamentos o sustancias venenosas pueden hacer que los riñones dejen de funcionar. Esta baja repentina de la función renal se llama insuficiencia renal aguda.
La insuficiencia renal aguda puede llevar a la pérdida permanente de la función renal. Pero si los riñones no sufren un daño grave, esa insuficiencia puede contrarrestarse con una operación quirúrgica. En la mayoría de los casos, la operación qiruúrgica, es un transplante renal, dejando los que ya posee la persona y poniendo otro en la zona abdominal.
Sistema inmune
De Wikipedia, la enciclopedia libre
(Redirigido desde Sistema inmunitario)
Saltar a navegación, búsqueda
Imagen del linfocito de un ser humano.
Microscopía electrónica: neutrófilo (amarillo) fagocitando la bacteria causante del carbunco, Bacillus anthracis (naranja).
El sistema inmunológico está formado por un conjunto de mecanismos que protegen al organismo de infecciones por medio de la identificación y eliminación de agentes patógenos. Debido a que los patógenos abarcan desde virus hasta gusanos parásitos intestinales, esta tarea es extremadamente compleja y las amenazas deben ser detectadas con absoluta especificidad distinguiendo los patógenos de las células y tejidos normales del organismo. A ello hay que sumar la capacidad evolutiva de los patógenos que les permite crear formas de evitar la detección por el sistema inmunológico e infectar al organismo hospedador.
Para protegerse, los organismos vivos han desarrollado varios mecanismos para reconocer y neutralizar patógenos. Incluso los microorganismos simples —como las bacterias— poseen un sistema de enzimas que las protegen contra infecciones virales. Otros mecanismos inmunológicos básicos se desarrollaron en las antiguas células eucariotas y permanecen hoy en sus descendientes modernos: plantas, peces, reptiles e insectos. Estos mecanismos incluyen péptidos antimicrobianos llamados defensinas, el proceso de fagocitosis y el sistema del complemento. Sin embargo, los mecanismos más sofisticados se desarrollaron más recientemente de forma conjunta con la aparición de los vertebrados[1] . El sistema inmunológico de los vertebrados —como el de los seres humanos— comprende varios tipos de proteínas, células, órganos y tejidos, que interactúan en una red elaborada y dinámica. Esta respuesta inmune más compleja que se manifiesta en los vertebrados incluye la capacidad de adaptarse para así reconocer patógenos concretos en forma más eficiente. El proceso de adaptación crea memorias inmunológicas y permite brindar una protección más efectiva durante futuros encuentros con estos patógenos. Este proceso de inmunidad adquirida es la base de la vacunación.
Los desórdenes en el sistema inmunológico pueden causar enfermedades. Las enfermedades relacionadas con la inmunodeficiencia ocurren cuando el sistema inmunológico es menos activo de lo normal, dando lugar a infecciones que pueden poner en peligro la vida. La inmunodeficiencia puede ser el resultado de el diestrés crónico, de una enfermedad genética, como la "inmunodeficiencia severa combinada", o ser producida por fármacos o una infección, como el síndrome de inmunodeficiencia adquirida (sida), causado por el virus de inmunodeficiencia humana (VIH). En contraposición, las enfermedades autoinmunes son producidas por un sistema inmunológico hiperactivo que ataca tejidos normales como si fueran organismos extraños. Las enfermedades autoinmunes incluyen artritis reumatoide, diabetes mellitus tipo 1 y Lupus eritematoso. El sistema inmunológico es objeto de intensos estudios científicos debido al papel crítico que desempeña en la salud humana.
Contenido[ocultar]
1 Líneas inmunológicas de defensa
2 Barreras superficiales
3 Inmunidad innata
3.1 Barreras humorales y químicas
3.1.1 Inflamación
3.1.2 Sistema del complemento
3.2 Barreras celulares del sistema innato
4 Inmunidad adaptativa
4.1 Linfocitos
4.1.1 Células T asesinas
4.1.2 Células T colaboradoras
4.1.3 Células T γδ
4.1.4 Anticuerpos y linfocitos B
4.1.5 Sistema inmune adaptativo alternativo
5 Memoria inmunológica
5.1 Inmunidad pasiva
5.2 Inmunidad activa e inmunización
6 Desórdenes en la inmunidad humana
6.1 Inmunodeficiencias
6.2 Autoinmunidad
6.3 Hipersensibilidad
7 Otros mecanismos de defensa del huésped
8 Inmunología de tumores
9 Regulación fisiológica
10 Manipulación en la medicina
11 Manipulación por los patógenos
12 Historia de la inmunología
13 Véase también
14 Referencias
15 Enlaces externos
//
Líneas inmunológicas de defensa [editar]
El sistema inmunológico protege al organismo de infecciones mediante una estrategia de capas o barreras de defensa sucesivas, cada una más específica que la anterior.
El primer nivel lo forman las barreras físicas que evitan que los agentes patógenos como las bacterias y los virus penetren en el organismo. Si un agente patógeno traspasa estas primeras barreras, el sistema inmunológico innato provee una respuesta inmediata, pero no específica. Los sistemas inmunológicos innatos se encuentran en todas las plantas y animales[2] . Sin embargo, si los agentes patógenos evaden la respuesta innata, los vertebrados poseen una tercera capa de protección, que es el sistema inmunológico adaptativo. Aquí el sistema inmunológico adapta su respuesta durante la infección para mejorar el reconocimiento del agente patógeno.
La información sobre esta respuesta mejorada se conserva aún después de que el agente patógeno es eliminado, bajo la forma de memoria inmunológica, y permite que el sistema inmune adaptativo desencadene ataques más rápidos y más fuertes si en el futuro el sistema inmune detecta este tipo de patógeno[3] .
características del sistema inmunológico
Sistema inmune innato
Sistema inmune adaptativo
La respuesta no es específica
Respuesta específica contra patógenos y antígenos
La exposición conduce a la respuesta máxima inmediata
Tiempo de demora entre la exposición y la respuesta máxima
Inmunidad mediada por células y componentes humorales
Inmunidad mediada por células y componentes humorales
Sin memoria inmunológica
La exposición conduce a la memoria inmunológica
Presente en casi todas las formas de vida
Presente solo en vertebrados mandibulados
Tanto la inmunidad innata como la adaptativa dependen de la habilidad del sistema inmunológico para distinguir entre las moléculas propias y las que no lo son. En inmunología, las moléculas propias son aquellos componentes de un organismo que el sistema inmunológico distingue de las substancias extrañas.[4] Al contrario, las moléculas que no son parte del organismo, son reconocidas como moléculas extrañas. Un tipo de moléculas extrañas son los llamados antígenos (que significa "anti" cuerpo "gen" eradores), son substancias que se enlazan a receptores inmunes específicos y desencadenan una respuesta inmune.[5] .
Barreras superficiales [editar]
Estas barreras superficiales pertenecen al sistema inmunológico innato pues no dan una respuesta específica contra determinado tipo de organismos patogenos o toxinas. Son defensas que en ocasiones resultan de procesos generales del organismo pero que tienen una importancia capital para el organismo pues eliminan una gran cantidad de infecciones contribuyendo de esta manera a aligerar la carga de las defensas adquiridas. Existe un gran número de tipos de barreras que protegen de infecciones, incluyendo barreras mecánicas, químicas y biológicas. La cutícula cerosa de una hoja, el exoesqueleto de un insecto, la cáscara de un huevo, y la piel son ejemplos de barreras mecánicas que forman la primera línea de defensa contra infecciones[5] . Sin embargo, como los organismos no están completamente sellados frente al medio externo, otros sistemas actúan para proteger las aberturas del cuerpo como los pulmones, el intestino y el tracto genitourinario. En los pulmones, la tos y los estornudos expulsan mecánicamente a los elementos patógenos y otros organismos del tracto respiratorio.
El flujo de las lágrimas y la orina, realiza también una acción de limpieza al producir el arrastre mecánico de elementos patógenos, mientras que la mucosidad secretada por el sistema respiratorio y el tracto gastrointestinal sirve para atrapar microorganismos.[6]
Las barreras químicas también protegen contra infecciones. La piel y el tracto respiratorio secretan péptidos antimicrobianos tales como las defensinas-β.[7] Enzimas tales como la lisozima y la fosfolipasa A en la saliva, las lágrimas y la leche materna también son agentes antibacterianos.[8] [9] Las secreciones de la vagina sirven como barreras químicas en la menarquia, cuando se vuelven ligeramente ácidas, mientras que el semen contiene defensinas y zinc para matar patógenos.[10] [11] En el estómago, el ácido gástrico y las peptidasas actúan como poderosas defensas químicas frente a patógenos ingeridos.
Dentro de los tractos genitourinario y gastrointestinal, la microbiota comensal sirve como barrera biológica porque compite con las bacterias patógenas por alimento y espacio, y en algunos casos modificando las condiciones del medio, como el pH o el contenido de hierro disponible.[12] Esto reduce la probabilidad de que la población de patógenos alcance el número suficiente de individuos como para causar enfermedades. Sin embargo, dado que la mayoría de los antibióticos no discriminan entre bacterias patógenas y la flora normal, los antibióticos orales pueden a veces producir un crecimiento excesivo de hongos (los hongos no son afectados por la mayoría de los antibióticos) y originar procesos como la candidiasis vaginal (provocada por una levadura).[13] La reintroducción de flora probiótica, como el lactobacillus, encontrado en el yogur, ayuda a restaurar un equilibrio saludable de las poblaciones microbianas en casos de infecciones intestinales.[14]
Inmunidad innata [editar]
Los gérmenes que logren penetrar en un organismo se encontrarán con las células y los mecanismos del sistema inmune innato. Las defensas del sistema inmune innato no son específicas, lo cual significa que estos sistemas reconocen y responden a los patógenos en una forma genérica[5] . Este sistema no confiere una inmunidad duradera contra el patógeno. El sistema inmune innato es el sistema dominante de protección en la gran mayoría de los organismos[2] .
Barreras humorales y químicas [editar]
Inflamación [editar]
La inflamación es una de las primeras respuestas del sistema inmune a una infección.[15] Los síntomas de la inflamación son el enrojecimiento y la hinchazón, que son causadas por el incremento del flujo de sangre en un tejido. La inflamación es producida por eicosanoides y citocinas, que son liberadas por células heridas o infectadas. Los eicosanoides incluyen prostaglandinas que producen fiebre y dilatación de los vasos sanguíneos asociados con la inflamación, y leucotrienos que atraen ciertos leucocitos[16] [17]
Las citocinas incluyen interleucinas que son responsables de la comunicación entre los leucocitos; quimiocinas que promueven la quimiotaxis; y los interferones que tienen efectos anti-virales como la supresión de la síntesis de proteínas en la célula huésped.[18] También pueden liberarse factores de crecimiento y factores citotóxicos. Estas citocinas y otros agentes químicos atraen células inmunitarias al lugar de la infección y promueven la curación del tejido dañado mediante la remoción de los patógenos.[19]
Sistema del complemento [editar]
El sistema del complemento es una cascada bioquímica que ataca las superficie de las células extrañas. Contiene más de 20 proteínas diferentes y recibe ese nombre por su capacidad para complementar la destrucción de patógenos iniciada por los anticuerpos. El sistema del complemento es el mayor componente humoral de la respuesta inmune innata[20] [21] . Muchas especies tienen sistemas de complemento, el mismo no sólo se presenta en los mamíferos, sino que las plantas, peces y algunos invertebrados también lo poseen[22] .
En los seres humanos, esta respuesta es activada por la unión de proteínas del complemento a carbohidratos de las superficies de los microorganismos o por la unión del complemento a anticuerpos que a su vez se han unido a los microorganismos. Esta señal de reconocimiento produce una rápida respuesta de destrucción.[23] La velocidad de la respuesta es el resultado de la amplificación de la señal que ocurre tras la activación proteolítica secuencial de las moléculas del complemento, que también son proteasas. Tras la unión inicial de proteínas del complemento al microbio, aquéllas activan su capacidad proteásica, que a su vez activa a otras proteasas del complemento y así sucesivamente. Esto produce una cascada catalítica que amplifica la señal inicial por medio de una retroalimentación positiva controlada. .[24] La cascada origina la producción de péptidos que atraen células inmunitarias, aumentan la permeabilidad vascular y opsonizan (recubren) la superficie del patógeno, marcándolo para su destrucción. Esta deposición del complemento puede también matar células directamente al bloquear su membrana plasmática[20] .
Barreras celulares del sistema innato [editar]
Imagen de un sistema circulatorio de un ser humano. Se pueden apreciar eritrocitos y leucocitos
Los leucocitos (células blancas de la sangre) actúan como organismos unicelulares independientes y son el segundo brazo del sistema inmune innato[5] . Los leucocitos innatos incluyen fagocitos (macrófagos, neutrófilos y células dendríticas), mastocitos, eosinófilos, basófilos y células asesinas naturales. Estas células identifican y eliminan patógenos, bien sea atacando a los más grandes a través del contacto o englobando a otros para así matarlos[22] . Las células innatas también son importantes mediadores en la activación del sistema inmune adaptativo[3] .
La Fagocitosis es una característica importante de la inmunidad innata celular, llevada a cabo por células llamadas fagocitos, que engloban o comen, patógenos y partículas rodeándolos exteriormente con su membrana hasta hacerlos pasar al interior de su citoplasma. Los fagocitos generalmente patrullan en búsqueda de patógenos, pero pueden ser atraídos a ubicaciones específicas por las citocinas[5] Al ser englobado por el fagocito, el patógeno resulta envuelto en una vesícula intracelular llamada fagosoma que a continuación se fusiona con otra vesícula llamada lisosoma para formar un fagolisosoma. El patógeno es destruido por la actividad de las enzimas digestivas del lisosoma o a consecuencia del llamado "chorro respiratorio" que libera radicales libres de oxígeno en el fagolisosoma.[25] [26] La fagocitosis evolucionó como un medio de adquirir nutrientes, pero este papel se extendió en los fagocitos para incluir el englobamiento de patógenos como mecanismo de defensa[27] La fagocitosis probablemente representa la forma más antigua de defensa del huésped, pues ha sido identificada en animales vertebrados e invertebrados[28]
Los neutrófilos y macrófagos son fagocitos que viajan a través del cuerpo en busca de patógenos invasores.[29] Los neutrófilos son encontrados normalmente en la sangre y es el tipo más común de fagocitos, que normalmente representan el 50 o 60% del total de leucocitos que circulan en el cuerpo.[30]
Durante la fase aguda de la inflamación, particularmente en el caso de las infecciones bacterianas, los neutrófilos migran hacia el lugar de la inflamación en un proceso llamado quimiotaxis, y son las primeras células en llegar a la escena de la infección. Los macrófagos son células versátiles que residen dentro de los tejidos y producen una amplia gama de sustancias como enzimas, proteínas del complemento, y factores reguladores como la Interleucina 1[31] . Los macrófagos también actúan como carroñeros, librando al organismo de células muertas y otros residuos, y como "células presentadoras de antígenos" para activar el sistema inmune adaptativo[3] .
Las células dendríticas son fagocitos en los tejidos que están en contacto con el ambiente externo; por lo tanto están localizados principalmente en la piel, la nariz, los pulmones, el estómago y los intestinos.[32] . Se llaman así por su semejanza con las dendritas neuronales, pues ambas tienen muchas proyecciones espiculares en su superficie, pero las células dendríticas no están relacionadas en modo alguno con el sistema nervioso. Las células dendríticas actúan como enlace entre los sistemas inmunes innato y adaptativo, pues presentan antígenos a las células T, uno de los tipos de célula clave del sistema inmune adaptativo[32] .
Los mastocitos residen en los tejidos conectivos y en las membranas mucosas, y regulan la respuesta inflamatoria.[33] Se encuentran asociadas muy a menudo con la alergia y la anafilaxia.[30] Los basófilos y los eosinófilos están relacionados con los neutrófilos. Secretan mediadores químicos que están involucrados en la defensa contra parásitos y desempeñan un papel en las reacciones alérgicas, como el asma[34] Las células asesinas naturales (NK, del inglés Natural Killer) son leucocitos que atacan y destruyen células tumorales, o células que han sido infectadas por virus.[35]
Inmunidad adaptativa [editar]
El sistema inmune adaptativo evolucionó en los vertebrados primitivos y permite una respuesta inmunitaria mayor, así como el establecimiento de la denominada memoria inmunológica, donde cada patógeno es recordado por un antígeno característico y propio de ese patógeno en particular.[36] La respuesta inmune adaptativa es específica de los antígenos y requiere el reconocimiento de antígenos que no son propios durante un proceso llamado presentación de los antígenos.
La especificidad del antígeno permite la generación de respuestas que se adaptan a patógenos específicos o a las células infectadas por patógenos. La habilidad de montar estas respuestas específicas se mantiene en el organismo gracias a las células de memoria. Si un patógeno infecta a un organismo más de una vez, estas células de memoria desencadenan una respuesta específica para ese patógeno que han reconocido, con el fin de eliminarlo rápidamente.
Linfocitos [editar]
Las células del sistema inmune adaptativo son una clase especial de leucocitos, llamados linfocitos. Las células B y las células T son las clases principales de linfocitos y derivan de células madre hematopoyéticas pluripotenciales de la médula ósea[22] . Las células B están involucradas en la respuesta inmune humoral, mientras que las células T lo están en la respuesta inmunitaria mediada por células.
Asociación de una célula T con CMH clase I o CMH clase II, y un antígeno(en rojo)
Las células B y T contienen moléculas receptoras que reconocen objetivos o blancos específicos. Las células T reconocen un objetivo no-propio, como un patógeno, sólo después de que los antígenos (pequeños fragmentos del patógeno) han sido procesados y presentados en combinación con un receptor propio, una molécula del llamado complejo mayor de histocompatibilidad (CMH). Hay dos subtipos principales de células T: la célula T asesina y la célula T colaboradora o ayudante. Las células T asesinas solo reconocen antígenos acoplados a moléculas del CMH de clase I, mientras que las células T colaboradoras sólo reconocen antígenos acoplados a moléculas del CMH de clase II. Estos dos mecanismos de presentación de antígenos reflejan los diferentes cometidos de los dos tipos de células T. Un tercer subtipo menor lo forman las células T γ δ (células T gamma/delta), que reconocen antígenos intactos que no están acoplados a receptores CMH.[37]
Por el contrario, el receptor específico de antígeno de las células B es un molécula de anticuerpo en la superficie de la célula B, y reconoce patógenos completos sin la necesidad de que los antígenos sean procesados previamente.
Cada linaje de células B expresa en su superficie un anticuerpo diferente, de forma que el conjunto completo de receptores de antígenos de las células B de un organismo, representa todos los anticuerpos que ese organismo es capaz de fabricar[22] .
Células T asesinas [editar]
Las células T asesinas atacan directamente a otras células que porten en su superficie antígenos foráneos o anormales[38]
Las células T asesinas son un subgrupo de células T que matan células infectadas con virus (y otros patógenos), o que estén dañadas o enfermas por otras causas.[39] Al igual que las células B, cada tipo de célula T reconoce un antígeno diferente. Las células T asesinas son activadas cuando su receptor de células T (RCT) se liga a su antígeno específico en un complejo con el receptor del CMH de clase I de otra célula. El reconocimiento de este complejo CMH-antígeno se ve favorecido por un co-receptor en la célula T, llamado CD8. Así, la célula T viaja a través del organismo en busca de células donde los receptores del CMH de clase I lleven este antígeno.
Cuando una célula T activada toma contacto con tales células, libera citotoxinas que forman poros en la membrana plasmática de la célula diana o receptora, permitiendo que iones, agua y toxinas entren en ella. Esto provoca el estallido de la célula diana o que experimente apoptosis[40] . La muerte de células huésped inducida por las células T asesinas tiene una gran importancia para evitar la replicación de los virus. La activación de las células T tiene unos controles muy estrictos y por lo general requiere una señal muy fuerte de activación por parte del complejo CMH/antígeno, o señales de activación adicionales proporcionadas por las células T colaboradoras (ver más abajo)[40] .
Células T colaboradoras [editar]
Las células T colaboradoras o ayudantes regulan tanto las respuestas inmunes innatas como las adaptativas y ayudan a determinar qué tipo de respuesta presentará el organismo ante un patógeno concreto.[41] [42] Estas células no tienen actividad citotóxica y no matan células infectadas o patógenos directamente. En cambio controlan la respuesta inmune dirigiendo a otras células para que realicen estas tareas.
Las células T colaboradoras expresan receptores de células T que reconocen antígenos ligados a moléculas del CMH de clase II. En las células T colaboradoras el complejo CMH:antígeno también es reconocido por el co-receptor CD4, que moviliza moléculas dentro de la célula T (e.g. la enzima Lck, una tirosin kinasa específica de leucocitos), las cuales son responsables de la activación de células T. Las células T colaboradoras tienen una asociación más débil con el complejo CMH:antígeno que el que se observa en las células T asesinas, lo que quiere decir que es necesario que se liguen muchos receptores (alrededor de 200 a 300) en la célula T ayudante a complejos CMH:antígeno para poder activar las células ayudantes, mientras que las células T asesinas pueden ser activadas por la unión a una sola molécula CMH:antígeno.
La activación de las células T colaboradoras requiere también un tiempo más prolongado de acoplamiento con la célula presentadora de antígeno.[43] La activación de una célula T colaboradora hace que ésta libere citoquinas que influyen sobre la actividad de muchos tipos de células. Las señales de las citoquinas liberadas por las células T colaboradoras refuerzan la función microbicida de los macrofagos y la actividad de las células T asesinas[5] . Además, la activación de las células T colaboradoras provoca una sobre-regulación de las moléculas expresadas en la superficie de las células T, como el ligando CD40 (también llamado CD154), que proporcionan señales extra de estimulación requeridas para activar a los linfocitos B productores de anticuerpos.[44]
Células T γδ [editar]
Las células T γδ representan una pequeña subpoblación de células T caracterizada por poseer en su superficie un receptor de célula T (RCT) diferente. La mayoría de las células T tienen un RCT compuesto de dos cadenas de glucoproteínas denominadas cadenas α y β; sin embargo en las células T γδ su receptor está formado por dos cadenas denominadas γ y δ. Este grupo de células T es, en general, menos numeroso que el de las αβ y es en la mucosa del intestino donde se las encuentra en mayor número, formando parte de una población de linfocitos denominada "linfocitos intraepiteliales".
Se desconoce en gran medida cuáles son las moléculas antigénicas que estimulan a las células T γδ, sin embargo, estas células son peculiares en el sentido de que parece que no necesitan que los antígenos sean procesados y presentados unidos a moléculas del CMH, aunque algunas reconocen a moléculas del CMH de clase IB. Por otra parte, se cree que las células T γδ desempeñan un papel principal en el reconocimiento de antígenos de naturaleza lipídica.
Las células T γδ comparten las características de las células T colaboradoras, las citotóxicas y las asesinas naturales. Al igual que otras subpoblaciones de células T no convencionales que portan RCTs invariables o constantes, como algunos subtipos de células T asesinas naturales, las γδ se encuentran en la frontera entre la inmunidad innata y la adaptativa.[45] Por una parte las células γδ forman parte de la inmunidad adaptativa porque son capaces de reorganizar los genes de sus RCTs para producir una diversidad de receptores y desarrollar una memoria fenotípica, es decir, ser portadoras de receptores adaptados a antígenos o patógenos concretos. Por otra parte también forman parte del sistema inmunitario innato ya que las diferentes subpoblaciones también poseen receptores capaces de actuar como receptores de reconocimiento de patrones. Así, por ejemplo, un gran número de células T Vγ9/Vδ2 humanas (un subtipo de células T γδ) responden o se activan en unas horas frente a moléculas comunes no peptídicas producidas por microorganismos, mientras que otro subtipo de células T, las Vδ1 en los epitelios, responden ante células epiteliales que porten indicadores de que han sufrido algún tipo de estrés.[46]
Un anticuerpo está compuesto por 2 cadenas pesadas y 2 ligeras. La única región variable permite a un anticuerpo reconocer a un antígeno que le corresponde, es decir que sea su complementario[38]
Anticuerpos y linfocitos B [editar]
El linfocito B identifica los patógenos cuando los anticuerpos de su superficie se unen a antígenos foráneos específicos[47] . Este complejo antígeno/anticuerpo pasa al interior del linfocito B donde es procesado por proteolisis y descompuesto en péptidos. El linfocito B muestra entonces estos antígenos peptídicos en su superficie unidos a moléculas del CMH de clase II. Esta combinación de CMH/antígeno atrae a un linfocito T colaborador que tenga receptores complementarios de ese complejo CMH/antígeno. La célula T libera entonces linfoquinas (el tipo de citoquinas producido por los linfocitos) y activa así al linfocito B.[48]
Cuando el linfocito B ha sido activado comienza a dividirse y su descendencia segrega millones de copias del anticuerpo que reconoce a ese antígeno. Estos anticuerpos circulan en el plasma sanguíneo y en la linfa, se ligan a los patógenos que portan esos antígenos, dejándolos marcados para su destrucción por la activación del complemento o al ser ingeridos por los fagocitos. Los anticuerpos también pueden neutralizar ciertas amenazas directamente, ligándose a toxinas bacterianas o interfiriendo con los receptores que virus y bacterias emplean para infectar las células[49] .
Sistema inmune adaptativo alternativo [editar]
Aunque las moléculas clásicas del sistema inmune adaptativo (por ejemplo, anticuerpos y receptores de células T) existen solamente en los vertebrados mandibulados, se ha descubierto una molécula diferente, y derivada de linfocitos, en vertebrados primitivos sin mandíbula, como la lamprea y animales marinos de la familia myxinoidea. Estos animales poseen una gran variedad de moléculas llamadas receptores linfocíticos variables (RLVs) que, como los receptores de antígenos de los vertebrados con mandíbula, son producidos por un número pequeño de genes (uno o dos). Se cree que estas moléculas se ligan a antígenos de los patógenos de un modo similar a como lo hacen los anticuerpos y con el mismo grado de especificidad.[50]
Memoria inmunológica [editar]
Cuando las células B y T son activadas y comienzan a replicarse, algunos de sus descendientes se convertirán en células de memoria con un largo periodo de vida. A lo largo de la vida de un animal, estas células recordarán cada patógeno específico que se hayan encontrado y pueden desencadenar una fuerte respuesta si detectan de nuevo a ese patógeno concreto. Esto es "adaptativo" porque ocurre durante el tiempo de vida de un individuo como una adaptación a una infección por ese patógeno y prepara al sistema inmunitario para futuros desafíos. La memoria inmunológica puede ser pasiva y de corta duración o activa y de larga duración.
Inmunidad pasiva [editar]
La inmunidad pasiva es generalmente de corta duración, desde unos pocos días a algunos meses. Los recién nacidos no han tenido una exposición previa a los microbios y son particularmente vulnerables a las infecciones. La madre les proporciona varias capas de protección pasiva. Durante el embarazo, un tipo particular de anticuerpo, llamado IgG, es transportado de la madre al bebé directamente a través de la placenta, así los bebés humanos tienen altos niveles de anticuerpos ya desde el nacimiento y con el mismo rango de especificidad contra antígenos que su madre.[51] La leche materna también contiene anticuerpos que al llegar al intestino del bebé le protegen de infecciones hasta que éste pueda sintetizar sus propios anticuerpos.[52]
Todo esto es una forma de inmunidad pasiva porque el feto, en realidad, no fabrica células de memoria ni anticuerpos, sólo los toma prestados de la madre. En medicina, la inmunidad protectora pasiva puede ser también transferida artificialmente de un individuo a otro a través de suero rico en anticuerpos.[53]
El curso del tiempo de una respuesta inmune comienza con el encuentro con el patógeno inicial (o la vacunación inicial) y conduce a la formación y mantenimiento de la memoria inmunológica activa.
Inmunidad activa e inmunización [editar]
La memoria activa de larga duración es adquirida después de la infección, por la activación de las células T y B. La inmunidad activa puede ser también generada artificialmente, a través de la vacunación. El principio en que se basa la vacunación (también llamada inmunización) consiste en introducir un antígeno de un patógeno para estimular al sistema inmunológico y desarrollar inmunidad específica contra ese patógeno particular sin causar la enfermedad asociada con ese microorganismo[5] .
Esta deliberada inducción de una respuesta inmune es efectiva porque explota la especificidad natural del sistema inmunológico, así como su inducibilidad. Siendo la enfermedad infecciosa una de las causas más frecuentes de muerte en la población humana, la vacunación representa la manipulación más eficaz del sistema inmunológico que ha desarrollado la humanidad[54] [22] .
Casi todas las vacunas virales están basadas en virus vivos atenuados, mientras que las vacunas bacterianas están basadas en componentes o fragmentos no celulares de bacterias, incluyendo componentes inofensivos de toxinas[5] . Dado que muchas vacunas derivadas de antígenos acelulares no inducen una respuesta adaptativa lo suficientemente fuerte, a la mayoría de vacunas bacterianas se les añaden coadyuvantes que activan las células del sistema inmune innato presentadoras de antígenos para potenciar la inmunogenicidad.[55]
Desórdenes en la inmunidad humana [editar]
El sistema inmunológico es un complejo notablemente eficaz que incorpora especificidad, inducibilidad y adaptación. No obstante, a veces se producen fallos que pueden agruparse, de forma genérica, dentro de las tres siguientes categorías: inmunodeficiencia, autoinmunidad e hipersensibilidad.
Inmunodeficiencias [editar]
La Inmunodeficiencia ocurre cuando uno o más de los componentes del sistema inmunológico están inactivos. La habilidad del sistema inmunológico de responder a los patógenos se ve disminuida en los jóvenes y en los adultos mayores. En estos últimos las inmunorespuestas empiezan a decaer alrededor de los 50 años.[56]
En países desarrollados, la obesidad, el alcoholismo y el abuso de drogas ilegales son causas comunes de una respuesta inmune disminuida.[56] Sin embargo, la malnutrición es la causa más común de la inmunodeficiencia en países en vías de desarrollo.[56]
Las inmunodeficiencias también pueden ser heredadas o adquiridas[5] . La enfermedad granulomatosa crónica, en la cual los fagocitos tienen problemas para destruir patógenos, es un ejemplo de una herencia, o inmunodeficiencia congénita. El SIDA y algunos tipos de cáncer causan inmunodeficiencia adquirida.[57] [58]
Autoinmunidad [editar]
Las respuestas inmunes exageradas abarcan el otro extremo de la disfunción inmunitaria, particularmente el desorden autoinmune. Aquí el sistema inmunitario falla en distinguir adecuadamente lo propio de lo extraño y ataca a partes del propio organismo. En circustancias normales, muchas células T y anticuerpos reaccionan con péptidos del propio organismo[59] Existen, sin embargo, células especializadas (localizadas en el timo y en la médula ósea)que participan en la eliminación de linfocitos jóvenes que reaccionan contra antígenos propios, para prevenir así la autoinmunidad[47] .
Hipersensibilidad [editar]
La hipersensibilidad es una inmunorespuesta que daña los tejidos propios del cuerpo. Está dividida en cuatro clases (Tipos I-IV) basándose en los mecanismos involucrados y el tiempo de desarrollo de la reacción hipersensible. El tipo I de hipersensibilidad es una reacción inmediata o anafiláctica, relacionada con alergias. Los síntomas van desde un malestar suave hasta la muerte. El tipo I de hipersensibilidad está mediado por la inmunoglobulina E, que es liberada por mastocitos y basófilos[60] .
El tipo II de hipersensibilidad se produce cuando los anticuerpos se ligan a antígenos localizados sobre las células propias del paciente, marcándolas para su destrucción. También recibe el nombre de hipersensibilidad dependiente de anticuerpos o citotóxica y es mediada por anticuerpos de tipo IgG e IgM[60] .
Los inmunocomplejos (agregados de antígenos, proteínas del complemento, y anticuerpos IgG e IgM ) depositados en varios tejidos desencadenan la hipersensibilidad de tipo III[60] . La hipersensibilidad de tipo IV (también conocida como "hipersensibilidad de tipo retardado") generalmente tarda entre dos y tres días en desarrollarse. Las reacciones de tipo IV están implicadas en muchas enfermedades autoinmunes e infecciosas, pero también incluyen dermatitis de contacto. Estas reacciones son mediadas por las células T, monocitos y macrófagos[60] .
Otros mecanismos de defensa del huésped [editar]
Es probable que el sistema inmunitario adaptativo y de múltiples componentes surgiera con los primeros vertebrados, ya que en los invertebrados no se producen linfocitos ni respuestas humorales basadas en anticuerpos[1] . Muchas especies, sin embargo, utilizan mecanismos que parecen ser los precursores de estas funciones de la inmunidad de los vertebrados. Los sistemas inmunitarios aparecen incluso en las formas de vida más simples, como las bacterias, que utilizan un único mecanismo de defensa llamado "sistema de restricción y modificación" para protegerse de patógenos víricos llamados bacteriófagos. .[61]
Los receptores de reconocimiento de patrón son proteínas que emplean casi todos los organismos para identificar moléculas relacionadas con patógenos microbianos. Los péptidos antimicrobianos llamados defensinas constituyen un componente de la respuesta inmune innata que se ha conservado a lo largo de la evolución, está presente en todos los animales y plantas y representa la forma principal de inmunidad sistémica de los invertebrados[1] . El sistema del complemento y las células fagocitarias también se encuentran presentes en la mayoría de los invertebrados. Las ribonucleasas y la ruta de interferencia de ARN se conservan en todos los eucariotas y se piensa que desempeñan una función en la respuesta inmune ante los virus y otros materiales genéticos extraños.[62]
A diferencia de los animales, las plantas no poseen células con capacidad fagocítica y la respuesta inmunitaria de la mayoría de las plantas comprende mensajeros químicos sistémicos que se distribuyen por toda la planta[63] . Cuando una parte de un vegetal resulta infectada, la planta genera una respuesta de hipersensibilidad localizada mediante la que las células del lugar de la infección sufren una rápida apoptosis para prevenir que la infección se extienda a otras partes de la planta. La resistencia sistémica adquirida (SAR) es un tipo de respuesta de las plantas que convierte a toda la planta en resistente a un agente infeccioso en particular.[63] . Los mecanismos de silenciamiento de ARN tienen una especial importancia en esta respuesta sistémica ya que pueden bloquear la replicación de virus. [64]
Inmunología de tumores [editar]
Los macrófagos han identificado una célula cancerosa(la grande). Fusionándose con la célula cancerosa, los macrófagos (las células blancas de menor tamaño) inyectarán toxinas que la matarán. La inmunoterapia para el tratamiento del cáncer es un área activa de investigación medica[65]
Otro cometido importante del sistema inmunitario es el de identificar y eliminar células tumorales. Las células transformadas de los tumores expresan antígenos que no aparecen en células normales. El sistema inmunitario considera a estos antígenos como extraños, lo que ocasiona que las células inmunitarias ataquen a las células tumorales transformadas. Los antígenos expresados por los tumores pueden tener varios orígenes;[66] algunos derivan de virus oncógenos como el papilomavirus humano, que ocasiona cáncer de cuello uterino[67] mientras que otros son proteínas propias del organismos que se presentan en bajos niveles en células normales, pero que alcanzan altos niveles en células tumorales. Un ejemplo es una enzima llamada tirosinasa que, cuando se expresa en altos niveles, transforma a ciertas células de la piel (melanocitos) en tumores llamados melanomas.[68] [69]
La principal respuesta del sistema inmunológico es destruir las células anormales por medio de células T asesinas, algunas veces con asistencia de células T ayudantes.[69] [70] Los antígenos tumorales son presentados unidos a moléculas del CMH de clase I, de forma similar a lo que ocurre con los antígenos víricos. Esto permite a las células T asesinas reconocer a las células tumorales como anormales.[71] Las células T asesinas naturales también matan células tumorales de una forma similar, especialmente si la célula tumoral tiene sobre su superficie menos moléculas del CMH de clase I de lo normal; algo que resulta habitual en los tumores.[72] A veces se generan anticuerpos contra las células tumorales, lo que permite que sean destruidas por el sistema del complemento.[66] [73] [74]
No obstante, algunas células tumorales evaden la acción del sistema inmunitario y generan cánceres.[75] Un mecanismo empleado a veces por las células tumorales, para evadir su detección por parte de las células T asesinas, consiste en reducir el número de moléculas del CMH de clase I en su superficie.[71]
Algunas células tumorales también liberan productos que inhiben la respuesta inmune, por ejemplo al secretar la citoquina TGF-β, la cual suprime la actividad de macrófagos y linfocitos.[76]
Además, también puede desarrollarse tolerancia inmunológica frente a los antígenos tumorales, de forma que el sistema inmunitario deja de atacar a las células tumorales.[75]
Regulación fisiológica [editar]
Las hormonas pueden modular la sensibilidad del sistema inmunológico. Por ejemplo, se sabe que las hormonas sexuales femeninas estimulan las reacciones tanto del sistema inmunológico adaptativo[77] como del innato.[78]
Algunas enfermedades autoinmunes como el lupus eritematoso afectan con mayor frecuencia a las mujeres, y su comienzo coincide a menudo con la pubertad.
Por el contrario, andrógenos como la testosterona parece que deprimen al sistema inmunológico.[79] Otras hormonas, como la prolactina y la hormona de crecimiento o vitaminas como la vitamina D, parece que también regulan las respuestas del sistema inmunitario.[80] [81]
Se piensa que el descenso progresivo en los niveles de hormonas con la edad, pudiera ser parcialmente responsable del debilitamiento de las respuestas inmunes en individuos de edad avanzada.[82] A la inversa, algunas hormonas son reguladas por el sistema inmunitario, sobre todo la actividad de la hormona tiroidea[83]
El sistema inmunológico se ve potenciado con el sueño y el descanso,[84] mientras que resulta perjudicado por el estrés.[85]
Las dietas pueden afectar al sistema inmunológico; por ejemplo frutas frescas, vegetales y comida rica en ciertos ácidos grasos favorecen el mantenimiento de un sistema inmunológico saludable.[86] Asimismo, la desnutrición fetal puede causar una debilitación de por vida del sistema inmunitario.[87]
En las medicinas tradicionales, se cree que algunas plantas pueden estimular el sistema inmunitario y ciertos estudios así lo han sugerido,[88] aunque su mecanismo de acción es complejo y difícil de caracterizar.
Manipulación en la medicina [editar]
La Corticosterona, una droga inmunosupresora
La respuesta inmunológica puede ser manipulada para suprimir respuestas no deseadas de la autoinmunidad, la alergia y el rechazo de trasplantes, así como para estimular respuestas protectoras contra patógenos que en gran medida eluden la acción del sistema inmunitario.
Se emplean fármacos inmunosupresores para controlar los desordenes autoinmunes o la inflamación cuando produce grandes daños en los tejidos, o para prevenir el rechazo de un órgano trasplantado[22] [89] .
Las drogas antiinflamatorias se emplean para controlar los efectos de la inflamación. Los corticosteroides son los más poderosos de estos medicamentos; sin embargo, tienen muchos efectos tóxicos colaterales y su uso debe ser controlado estrictamente.[90]
Por ello, a menudo, se emplean dosis más bajas de antiinflamatorios junto con fármacos inmunosupresores y citotóxicos como el metotrexato o la azatioprina. Las drogas citotóxicas inhiben la inmunorespuesta destruyendo células que se están dividiendo, como las células T que han sido activadas. Sin embargo, la destrucción es indiscriminada, por lo que otros órganos y tipos de células resultan afectados, lo que ocasiona efectos colaterales[89] . Las drogas inmunodepresoras como la ciclosporina evitan que las células T respondan correctamente a las señales, inhibiendo rutas de transducción de señales.[91]
Los fármacos de mayor peso molecular (> 500 Dalton) pueden provocar la neutralización de la respuesta inmune, particularmente si son suministrados repetidamente, o en dosis grandes. Esto limita la eficacia de drogas basadas en gandes péptidos y proteínas (que generalmente superan los 6000 Dalton). En algunos casos, la droga no es en sí misma inmunógena, pero puede ser coadministrada con un medicamento inmunógeno, como el Taxol. Se han desarrollado métodos computacionales para predecir la inmunogenicidad de péptidos y proteínas, que resultan particularmente útiles en el diseño de anticuerpos terapéuticos, la valoración de la probable virulencia de las mutaciones que afecten a partículas víricas de recubrimiento y la validación de nuevos fármacos basados en péptidos. Las primeras técnicas se basaban principalmente en el hecho observado de que los aminoácidos hidrófilos se encuentran presentes, en mayor cantidad que los aminoácidos hidrófobos, en los epítopos (determinantes antigénicos que producen una interacción específica reversible con una inmunoglobulina y consisten en un grupo de aminoácidos localizados sobre la superficie del antígeno);[92] sin embargo, más recientemente se han empleado técnicas de Aprendizaje Automático, que se sirven de bases de datos de epítopos conocidos, generalmente de proteínas víricas bien estudiadas.[93]
Se ha creado una base de datos de acceso público para la catalogación de epítopos de patógenos que se sabe son reconocidos por células B.[94] Los estudios de inmunogenicidad basados en la bioinformática, constituyen un campo emergente que se conoce con el nombre de inmunoinformática.[95]
Manipulación por los patógenos [editar]
El éxito de cualquier patógeno depende de su habilidad para eludir las respuestas inmunitarias del huésped. Por ello, los patógenos han desarrollado diferentes métodos que les permiten infectar con éxito al huésped, al mismo tiempo que evaden la destrucción producida por la inmunidad.[96] Las bacterias frecuentemente logran sobrepasar las barreras físicas al secretar enzimas que digieren la barrera – por ejemplo, utilizando un sistema de secreción de tipo II.[97] Alternativamente, al usar un sistema de secreción tipo III, pueden insertar un tubo hueco en la célula huésped que les provee de un conducto para trasladar proteínas del patógeno al huésped; las proteínas transportadas por el tubo son utilizadas frecuentemente para desarmar las defensas del huésped.[98]
Una estrategia utilizada por varios patógenos para eludir al sistema inmune innato es la replicación intracelular (también llamada patogénesis intracelular). En ella, un patógeno pasa la mayor parte de su ciclo vital dentro de células huésped en donde se protege del contacto directo con células inmunitarias, anticuerpos y proteínas del complemento. Algunos ejemplos de patógenos intracelulares incluyen virus, bacterias del género Salmonella causantes de toxiinfecciones alimentarias y los parásitos eucariotas que causan la malaria (Plasmodium falciparum) y la leismaniosis (Leishmania spp.). Otras bacterias, como el Mycobacterium tuberculosis, viven dentro de una cápsula protectora que evita su lisis por el complemento.[99] Muchos patógenos secretan componentes que disminuyen o desvían la respuesta inmunitaria del huésped.[96] Algunas bacterias forman biopelículas para protegerse de las células y proteínas del sistema inmunitario. Estas biopelículas están presentes en muchas infecciones que cursan con éxito, como por ejemplo las infecciones crónicas producidas por Pseudomonas aeruginosa y Burkholderia cenocepacia características de la Fibrosis quística.[100] Otras bacterias generan proteínas de superficie que se ligan a los anticuerpos, volviéndolos ineficaces. Como ejemplos se pueden citar: estreptococos (proteína G), Staphylococcus aureus (proteína A), y Peptostreptococcus magnus (proteína L).[101]
Los mecanismos empleados por los virus para eludir al sistema inmunitario adaptativo son más complejos. El enfoque más sencillo consiste en cambiar rápidamente los epítopos no esenciales (Aminoácidos o azúcares) de la superficie del invasor, mientras se mantienen los epítopos esenciales ocultos. El VIH, por ejemplo, muta regularmente las proteínas de su envoltura viral que le son esenciales para entrar en las células huésped que son su objetivo. Estos cambios frecuentes en antígenos pueden explicar el hecho de no haber logrado producir vacunas dirigidas contra estas proteínas.[102] Otra estrategia común para evitar ser detectados por el sistema inmunitario consiste en enmascarar sus antígenos con proteínas de la célula huésped. Así, en el VIH, la envoltura que recubre al virión está formada por la membrana más externa de la célula huésped; tales virus "auto-camuflados" dificultan que el sistema inmunitario los identifique como algo no propio.[103]
Historia de la inmunología [editar]
Artículo principal: Inmunología
Paul Ehrlich -Premio Nobel en 1908, por sus contribuciones al campo de la inmunología
La Immunología es una ciencia que examina la estructura y función del sistema inmunológico. Se origina en la medicina y en los primeros estudios sobre las causas de la inmunidad a las enfermedades. La referencia más antigua a la inmunidad se produce durante la plaga de Atenas en el 430 a. C. Tucídides notó que algunas personas que se habían recuperado de un brote anterior de la enfermedad podían atender a los enfermos sin contraer la enfermedad por segunda vez.[104] Esta observación de inmunidad adquirida fue luego utilizada por Louis Pasteur en el desarrollo de la vacunación y en su Teoría microbiana de la enfermedad.[105] La teoría de Pasteur se oponía a las teorías contemporáneas sobre las enfermedades, tales como la Teoría miasmática. No se confirmó que los microorganismos fueran la causa de las enfermedades infecciosas hasta 1891, cuando Robert Koch enunció sus postulados, por los que recibió el Premio Nobel en 1905.[106] En 1901, con el descubrimiento del virus de la fiebre amarilla por Walter Reed, se confirmó que los virus son patógenos humanos.[107]
Se produjo un gran avance en la inmunología hacia el final del siglo XIX, gracias al rápido desarrollo de los estudios de inmunidad humoral y de inmunidad celular.[108] De particular importancia fue el trabajo de Paul Ehrlich, quien propuso la Teoría de la cadena lateral para explicar la especificidad de la reacción antígeno-anticuerpo; sus contribuciones al entendimiento de la inmunología humoral fueron reconocidos con el Premio Nobel en 1908, recibido en conjunto con Elie Metchnikoff, el fundador de la inmunología celular.[109]
VER VIDEO COMPLETO EN :http://es.youtube.com/watch?v=3mZSL6tdUGY
VER PAGINA COMPLETA EN http://es.wikipedia.org/wiki/Anatom%C3%ADa_humana
miércoles, 3 de diciembre de 2008
Suscribirse a:
Entradas (Atom)